Theoretical Evaluation of the Overall Values of Discrepancy Indices for Truncated Data. I. Normalized *R* indices for a Centrosymmetric Crystal with Similar Atoms

By S. Parthasarathy and D. Velmurugan

Department of Physics (Crystallography and Biophysics),* University of Madras, Guindy Campus, Madras – 600025, India

(Received 2 June 1980; accepted 13 January 1981)

Abstract

Theoretical expressions for the local values of six types of normalized R indices applicable to truncated data are derived for a centrosymmetric crystal by taking the model structure to be of the imperfectly related incomplete type. These indices are tabulated as functions of σ_A and y_t . These results can be used to obtain the overall values of the R indices applicable to truncated data which is characterized by a given value of y_t .

1. Introduction

Values of different types of discrepancy indices (i.e. R indices) have been worked out in the literature for a number of crystallographic situations, such as crystals with similar atoms, crystals with heavy atoms, crystals with pseudo-symmetry in the atomic distribution, etc. (for details see Srinivasan & Parthasarathy, 1976, and the review of Parthasarathy, 1975). These results were obtained under the assumption that all the independent reflections in a given range of $(\sin \theta/\lambda)$ (e.g. Cu Ka sphere) are available in the data. However, in actual crystals, the observed intensity of a certain percentage of reflections may be negative and many crystallographers truncate the data sets by omitting such reflections as well as those whose net counts are less than one to two times the standard deviation of this value (Stout & Jensen, 1968). Hence, it would be useful to evaluate theoretically the overall values of the various R indices applicable to such truncated data, wherein the reflections for which $y_N < y_t \ (=\sqrt{z_t})$ are omitted.[†] In this series of papers we shall therefore derive the theoretical expressions of the various R indices corresponding to different crystallographic situations and show how these results could be used to compute their theoretical *overall values*. Since the various indices behave differently under different situations (Parthasarathy & Parthasarathi, 1975; Parthasarathi & Parthasarathy, 1977; PP, 1977 hereafter), we shall deal with all the R indices in this series.

In this series we shall mostly follow the notations used in chapters 5 and 6 of Srinivasan & Parthasarathy (1976; hereafter SP, 1976). We shall use the abbreviations C and NC to denote the centrosymmetric and non-centrosymmetric cases respectively. We shall denote the joint probability density function (joint p.d.f. hereafter) of the normalized structure amplitudes y_N and y_P^c valid for the complete data by $P(y_N, y_P^c)$ and that valid for the truncated data by $P_t(y_N, y_P^c)$. For convenience we shall refer to $P_t(y_N, y_P^c)$ as the truncated distribution function. The expectation value of $f(y_N, y_P^c)$ for the truncated data will be denoted by $\langle f(y_N, y_P^c) \rangle_t$ and that for the complete data by $\langle f(y_N, y_P^c) \rangle$.

The experimental value of an R index is usually computed by taking all the independent observed reflections as a single group. We refer to the value of the R index thus obtained as the overall value of the Rindex. A number of factors, such as the positional errors in the atoms in the model, lack of similarity of the atoms in the unit cell, etc., cause the value of an R index for a general model to vary with $\sin \theta / \lambda$. The theoretical evaluation of the overall value of an R index is therefore generally carried out in two stages; namely, (i) evaluation of the R index in different narrow regions of sin θ/λ (within which the atomic scattering factors can be treated as constant) and (ii) evaluation of the overall value by taking care of the factors which change with sin θ/λ (e.g. atomic scattering factors) and by giving proper weights depending on the number of observed reflections in the various ranges. We shall therefore refer to the value of an R index calculated using reflections in a narrow range of sin θ/λ as a *local* value of the R index in order to distinguish it from its overall value. The overall value of an R index will be

© 1981 International Union of Crystallography

^{*} Contribution No. 545.

[†] For convenience, we shall refer to the data which consist of all the theoretically possible independent reflections within a given region of $(\sin \theta/\lambda)$ as the *complete data* and the data which exclude the reflections for which $y_N < y_t$ as the *truncated data*.

denoted with a bar over the corresponding symbol, while the local value of the index will be denoted without the bar.

In this paper we shall obtain, for a centrosymmetric crystal, the theoretical expressions for the local values of the six normalized R indices,* viz. $R_1(F)$, $R_1(I)$, $_BR_1(F)$, $_BR_1(I)$, $R_1^f(F)$ and $R_1^f(I)$ and show how these could be used to evaluate the overall values of these indices.

2. Derivation of the theoretical expressions for the overall values of the normalized R indices

2.1. Preliminary results

We shall presently explain the general notation and nomenclature regarding the overall values of different types of R indices computed for truncated data by taking the conventional normalized index $R_1(F)$ as an illustrative example. The corresponding results for the other indices can be similarly obtained.

The overall value of the conventional normalized index $R_1(F)$ applicable to the complete data is defined to be (SP, 1976)

$$\bar{R}_{1}(F) = \frac{\sum\limits_{hkl} ||F_{N}| - |F_{P}^{c}|/\sigma_{1}|}{\sum\limits_{hkl} |F_{N}|}, \qquad (1)$$

where the summation is over all the theoretically possible independent reflections within a given $(\sin \theta/\lambda)$ range[†] ($0 \le s \le S_{\max}$, say), $|F_P^c|$ is the magnitude of the calculated structure factor of the trial structure consisting of P out of N atoms in the unit cell and $|F_N|$ is the magnitude of the structure factor of the crystal structure. Here σ_1^2 is defined to be[‡]

$$\sigma_1^2 = \left\langle |F_P^c|^2 \right\rangle / \left\langle |F_N|^2 \right\rangle = \sigma_P^2 / \sigma_N^2. \tag{2}$$

For a structure with similar atoms

$$\sigma_1^2 = P/N,\tag{3}$$

which is a constant independent of sin θ/λ . The overall value of this index computed with the truncated data is

denoted by $[\bar{R}_1(F)]$, and is defined to be

$$[\bar{R}_{1}(F)]_{t} = \frac{\sum_{kl}^{t} ||F_{N}| - |F_{P}^{c}|/\sigma_{1}|}{\sum_{kl}^{t} |F_{N}|}, \qquad (4)$$

where \sum_{hkl}^{t} means that the summation is over the independent reflections of the *truncated* data in the range 0 to S_{max} . In our theoretical studies, it is convenient to use the normalized variables y_N and y_P^c defined by

$$y_N = |F_N| / \sigma_N, y_P^c = |F_P^c| / \sigma_P.$$
 (5)

Making use of (5), we can rewrite (4) as

$$\left[\bar{R}_{1}(F)\right]_{t} = \frac{\sum_{kl}^{t} \sigma_{N} |y_{N} - y_{P}^{c}|}{\sum_{kl}^{t} \sigma_{N} y_{N}}.$$
(6)

If the reflections are divided into groups based on the values of s, we can rewrite (6) as

$$\left[\bar{R}_{1}(F)\right]_{t} = \frac{\sum\limits_{s} \sum_{r}^{t} \sigma_{Nsr} |y_{N} - y_{P}^{c}|_{sr}}{\sum\limits_{s} \sum\limits_{r}^{t} \sigma_{Nsr} y_{Nsr}},$$
(7)

where the summation over r is carried out over the reflections in a given range of $\sin \theta/\lambda$ and over s is carried out over the various ranges into which the inverval 0 to S_{max} has been partitioned. Here σ_{Nsr} denotes the value of σ_N for reflection r in the range s. If the $\sin \theta/\lambda$ ranges are sufficiently narrow, we can take the values of σ_{Nsr} for the different reflections in the range s to be the same (σ_{Ns} , say). We can therefore rewrite (7) as

$$\left[\bar{R}_{1}(F)\right]_{t} = \frac{\sum_{s} \sigma_{Ns} \sum_{r}^{t} |y_{N} - y_{P}^{c}|_{sr}}{\sum_{s} \sigma_{Ns} \sum_{r}^{t} y_{Nsr}},$$
(8)

If n_s is the number of *observed* independent reflections in the range s in the truncated data we can write (8) as

$$[\bar{R}_{1}(F)]_{t} = \frac{\sum_{s} \sigma_{Ns} n_{s} [\langle |y_{N} - y_{P}^{c}| \rangle_{s}]_{t}}{\sum_{s} \sigma_{Ns} n_{s} [\langle y_{N} \rangle_{s}]_{t}}, \qquad (9)$$

where $[\langle |y_N - y_P^c| \rangle_s]_t$ and $[\langle y_N \rangle_s]_t$ denote respectively the expectation values of $|y_N - y_P^c|$ and y_N for the observed reflections in the range s of the truncated data.

^{*} We shall not consider the indices $R_1^*(F)$ and $R_1^*(I)$ since $R_1(F)$ and $R_1(I)$ are somewhat better than the former two (PP, 1977).

[†] We shall use s to stand for sin θ/λ . S_{max} is the maximum value of s for the given data.

 $[\]ddagger$ We shall denote $1 - \sigma_1^2$ by σ_2^2 .

		Notation for	Overall value of	the index	Definition of the local value of the			
Number	Name of the R index	value of the index	Definition*	Equivalent expression	unnormalized indices based on the normalized variables y_N and y_P^c			
1	Conventional index based on F	$[\hat{R}_1(F)]_t$	$\frac{\sum^t \left F_N - F_P^c / \sigma_1\right }{\sum^t F_N }$	$\frac{\sum_{s} f_{s} n_{s} [R_{1}(y)]_{t}}{\sum_{s} f_{s} n_{s}}$	$[R_1(y)]_t$	$=\frac{\langle y_N - y_P^c \rangle_t}{\langle y_N \rangle_t}$		
2	Conventional index based on <i>I</i>	$\left[\bar{R}_{1}(I)\right]_{t}$	$\frac{\sum^{t} I_N - I_P^c/\sigma_1^2 }{\sum^{t} I_N}$	$\frac{\sum_{s} f_{s}^{2} n_{s} [R_{1}(z)]_{t}}{\sum_{s} f_{s}^{2} n_{s}}$	$[R_1(z)]_t$	$=\frac{\langle y_N^2-(y_P^c)^2 \rangle_t}{\langle y_N^2\rangle_t}$		
3	Booth-type index based on F	$\left[{}_{B}\bar{R}_{1}(F)\right]_{t}$	$\frac{\sum^t (F_N - F_P^c /\sigma_1)^2}{\sum^t F_N ^2}$	$\frac{\sum_{s} f_{s}^{2} n_{s} [_{B} R_{1}(y)]_{t}}{\sum_{s} f_{s}^{2} n_{s}}$	$\left[{}_{B}R_{1}(y)\right]_{t}$	$=\frac{\langle (y_N-y_P^c)^2 \rangle_t}{\langle y_N^2 \rangle_t}$		
4	Booth-type index based on I	$\left[{}_{B}\bar{R}_{1}(I)\right]_{t}$	$\frac{\sum^{\iota} (I_N - I_P^c/\sigma_1^2)^2}{\sum^{\iota} I_N^2}$	$\frac{\sum_{s} f_{s}^{4} n_{s} [_{B} R_{1}(z)]_{t}}{\sum_{s} f_{s}^{4} n_{s}}$	$\left[{}_{B}R_{1}(z)\right]_{t}$	$=\frac{\langle (y_N^2-(y_P^c)^2)^2\rangle_t}{\langle y_N^4\rangle_t}$		
5	Fractional-type index based on F	$\left[\bar{R}_{l}^{f}(F)\right]_{t}$	$\frac{1}{N_0} \sum^t \left \frac{ F_N - F_P^c /\sigma_1}{(F_N + F_P^c /\sigma_1)/2} \right $	$\frac{\sum_{s} n_{s} [R_{1}^{f}(y)]_{t}}{\sum_{s} n_{s}}$	$\left[R_{1}^{f}(y)\right]_{t}$	$= 2 \left\langle \left \frac{y_N - y_P^c}{y_N + y_P^c} \right \right\rangle_t$		
6	Fractional-type index based on I	$\left[\bar{R}_{1}^{f}(I)\right]_{t}$	$\frac{1}{N_0} \sum_{i} \left \frac{I_N - I_P^c / \sigma_1^2}{(I_N + I_P^c / \sigma_1^2) / 2} \right $	$\frac{\sum_{s} n_{s} [R_{1}^{f}(z)]_{t}}{\sum_{s} n_{s}}$	$[R^{f}_{1}(z)]_{t}$	$= 2 \left\langle \left \frac{y_N^2 - (y_P^c)^2}{y_N^2 + (y_P^c)^2} \right \right\rangle$		

Table 1. Definition of the overall values of various normalized R indices for truncated data and related results

* The summation $\sum t$ is over the independent reflections of the truncated data. The summation \sum_s is over the different narrow ranges of sin θ/λ_0 . N_0 is the number of reflections in the truncated data.

Since $[\langle y_N \rangle_s]_t$ is a property of the structure but not of the model and since for a structure with similar atoms[†] the p.d.f. of y_N is independent of s (Wilson, 1949), it follows that $[\langle y_N \rangle_s]_t$ will depend only on y_t . Hence we can write $[\langle y_N \rangle_s]_t$ simply as $[\langle y_N \rangle]_t$. We can therefore rewrite (9) as

$$\left[\bar{R}_{1}(F)\right]_{t} = \frac{\sum_{s} n_{s} \sigma_{Ns} \left[R_{1}(y)\right]_{t}}{\sum_{s} n_{s} \sigma_{Ns}},$$
 (10)

where $[R_1(y)]_t$ is defined to be

$$[R_1(y)]_t = \frac{[\langle |y_N - y_P^c| \rangle_s]_t}{[\langle y_N \rangle]_t}.$$
 (11)

We refer to $[R_1(y)]_t$ as the local value of $R_1(y)$ calculated with the *observed* reflections in a particular range s. For equal-atom atructures, $\sigma_N = \sqrt{Nf}$. We can therefore rewrite (9) as

$$[\bar{R}_{1}(F)]_{t} = \frac{\sum_{s} f_{s} n_{s} [R_{1}(y)]_{t}}{\sum_{s} f_{s} n_{s}}.$$
 (12)

It is clear from (12) that we can evaluate the overall value $[\bar{R}_1(F)]_t$ for the truncated data in $0 \le s < S_{\max}$ if we know, corresponding to the various ranges of s, the values of the scattering factor of the atom, the number of independent reflections in the truncated data and the local values of $[R_1(y)]_t$. Of these, f_s and n_s for a given crystal are known quantities; we shall show in the rest of this paper how the local values $[R_1(y)]_t$ and those for the other normalized R indices can be obtained theoretically.

As stated earlier, the above considerations can be carried over to the other five normalized R indices. The final expressions which are the analogues of (12) are hence listed in Table 1 without derivation.

2.2. Derivation of the joint p.d.f. of y_N and y_P^c for the truncated data

It is seen from columns 5 and 6 of Table 1 that the overall values of the various normalized R indices can be calculated if we obtain the expectation values of simple functions of y_N and y_P^c . Thus the overall values of these R indices can, in principle, be evaluated if we know the joint p.d.f. of y_N and y_P^c for the truncated data, *i.e.* the function $P_t(y_N, y_P^c)$. It is clear that the function

^{*} For a structure with heavy atoms the p.d.f. of y_N involves the parameter σ_1^2 . Since σ_1^2 is a function of s, it follows that $|\langle y_N \rangle_s|_t$ could also depend on s.

 $P_t(y_N, y_P^c)$ is related to the function $P(y_N, y_P^c)$ by

$$P_t(y_N, y_P^c) = \frac{1}{\beta} P(y_N, y_P^c), \quad y_t \le y_N < \infty$$
(13)
$$0 \le y_P^c < \infty,$$

where β^* is given by

$$\beta = \int_{y_t}^{\infty} \int_{0}^{\infty} P(y_N, y_P^c) \, \mathrm{d}y_N \mathrm{d}y_P^c. \tag{14}$$

The function $P(y_N, y_P^c)$ for the C case is known to be (SP, 1976)

$$P(y_N, y_P^c) = \frac{2}{\pi \sigma_B} \exp\left\{-\frac{[y_N^2 + (y_P^c)^2]}{2\sigma_B^2}\right\}$$
$$\times \cosh\left[\frac{\sigma_A y_N y_P^c}{\sigma_B^2}\right],$$
$$0 \le y_N < \infty, \quad 0 \le y_P^c < \infty, \quad (15)$$

where

$$\sigma_A^2 + \sigma_B^2 = 1, \qquad \sigma_A = \sigma_1 D \tag{16}$$

$$D = \exp\left(-\frac{\pi^3}{4} |H|^2 \langle |\Delta r| \rangle^2\right), |H| = 2s. \quad (17)$$

Making use of (15) and (16), we have shown {in the Appendix[†] [see (A-10)]} that β_c is given by

$$\beta_c = \operatorname{erfc} \left(y_t / \sqrt{2} \right). \tag{18}$$

From (13) and (15), we obtain

$$P_{t}(y_{N}, y_{P}^{c}) = \frac{2}{\beta_{c} \pi \sigma_{B}} \exp\left\{-\frac{[y_{N}^{2} + (y_{P}^{c})^{2}]}{2\sigma_{B}^{2}}\right\}$$
$$\times \cosh\left[\frac{\sigma_{A} y_{N} y_{P}^{c}}{\sigma_{B}^{2}}\right],$$
$$y_{t} \le y_{N} < \infty, \qquad 0 \le y_{P}^{c} < \infty. \tag{19}$$

2.3. Derivation of the theoretical expressions for the local values of normalized R indices applicable to truncated data

Index $[R_1(y)]_t$ From the definition of $[R_1(y)]_t$ in Table 1, we have

$$[R_{1}(y)]_{t} = \frac{1}{\langle y_{N} \rangle_{t}} \int_{y_{t}}^{\infty} \int_{0}^{\infty} |y_{N} - y_{P}^{c}| P_{t}(y_{N}, y_{P}^{c}) dy_{N} dy_{P}^{c},$$
(20)

* Since the function $P(y_N, y_p^c)$ for the C and NC cases is different, β will be different for the two cases. Hence, the quantity appropriate to the C and NC cases will be denoted by β_C and β_{NC} respectively. where $P_t(y_N, y_P^c)$ is given by (19). Making use of (13), we can rewrite (20) as

$$[R_{1}(y)]_{t} = \frac{\langle y_{N} \rangle}{\beta_{c} \langle y_{N} \rangle_{t}} \left[\frac{1}{\langle y_{N} \rangle} \int_{0}^{\infty} \int_{0}^{\infty} |y_{N} - y_{P}^{c}| P(y_{N}, y_{P}^{c}) \right]$$
$$\times dy_{N} dy_{P}^{c} - \frac{1}{\langle y_{N} \rangle} \int_{0}^{y_{t}} \int_{0}^{\infty} |y_{N} - y_{P}^{c}|$$
$$\times P(y_{N}, y_{P}^{c}) dy_{N} dy_{P}^{c} \right].$$
(21)

The first term within the square brackets in (21) represents $\langle |y_N - y_P^c| \rangle / \langle y_N \rangle$, which by definition is $R_1(y)$. It has been shown that (SP, 1976)

$$R_1(y) = [2(1 + \sigma_A)]^{1/2} + [2(1 - \sigma_A)]^{1/2} - 2. \quad (22)$$

Making use of the known result that $\langle y_N \rangle = \sqrt{2/\pi}$ (Wilson, 1949) and the expressions for β_C [see (18)] and $\langle y_N \rangle_t$ [see (A-11)], we can rewrite (21) as

$$[R_{1}(y)]_{t} = \exp(y_{t}^{2}/2) \left[R_{1}(y) - \sqrt{\frac{\pi}{2}} \int_{0}^{y_{t}} \int_{0}^{\infty} |y_{N} - y_{P}^{c}| \times P(y_{N}, y_{P}^{c}) \, \mathrm{d}y_{N} \, \mathrm{d}y_{P}^{c} \right].$$
(23)

It is convenient to change the variables of integration to u and v where

$$u = y_N/(1 + y_N)$$
 and $v = y_P^c/(1 + y_P^c)$. (24)

Thus, we obtain

$$[R_{1}(y)]_{t} = \exp(y_{t}^{2}/2) \left[R_{1}(y) - \sqrt{\frac{\pi}{2}} \int_{0}^{y_{t}/(1+y_{t})} \int_{0}^{1} \left| \frac{u}{1-u} - \frac{v}{1-v} \right| \right] \times P\left(\frac{u}{1-u}, \frac{v}{1-v}\right) \times \frac{du}{(1-u)^{2}} \frac{dv}{(1-v)^{2}} \right].$$
(25)

Here, P[u/(1-u), v/(1-v)] means that in expression (15) for $P(y_N, y_p^c)$, y_N is to be replaced by u/(1-u) and y_p^c by v/(1-v).

Index $[R_1(z)]_t$. From the definition of $[R_1(z)]_t$ in Table 1 we have

$$[R_{1}(z)]_{t} = \frac{1}{\langle y_{N}^{2} \rangle_{t}} \int_{y_{t}}^{\infty} \int_{0}^{\infty} |y_{N}^{2} - (y_{P}^{c})^{2}| P_{t}(y_{N}, y_{P}^{c}) dy_{N} dy_{P}^{c}.$$
(26)

Following the method used for $[R_1(y)]_t$ and using (A-13) and the definition (see SP, 1976)

$$R_1(z) = \langle |z_N - z_P^c| \rangle = \langle |y_N^2 - (y_P^c)^2| \rangle,$$

[†] This appendix has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35848 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

we can rewrite (26) as

$$[R_{1}(z)]_{t} = \left[R_{1}(z) - \int_{0}^{y_{t} \infty} |y_{N}^{2} - (y_{P}^{c})^{2}| \times P(y_{N}, y_{P}^{c}) \, dy_{N} \, dy_{P}^{c} \right] \times [\beta_{C} + \sqrt{(2/\pi)} \, y_{t} \exp(-y_{t}^{2}/2)]^{-1}.$$
(27)

It is known that (SP, 1976)

$$R_1(z) = -\frac{4}{\pi} \sigma_B. \tag{28}$$

Making use of the substitution (24), we can rewrite (27) as

$$[R_{1}(z)]_{t} = \left[R_{1}(z) - \int_{0}^{y_{t}/(1+y_{t})-1} \left| \left(\frac{u}{1-u} \right)^{2} - \left(\frac{v}{1-v} \right)^{2} \right| P\left(\frac{u}{1-u}, \frac{v}{1-v} \right) \\ \times \frac{\mathrm{d}u}{(1-u)^{2}} \frac{\mathrm{d}v}{(1-v)^{2}} \right] \\ \times [\beta_{c} + \sqrt{(2/\pi)} y_{t} \exp(-y_{t}^{2}/2)]^{-1}.$$
(29)

Index $[_{B}R_{1}(y)]_{t}$. From the definition of $[_{B}R_{1}(y)]_{t}$ given in Table 1 we can obtain

$$[_{B}R_{1}(y)]_{t} = \frac{\langle y_{N}^{2} \rangle_{t} + \langle (y_{P}^{c})^{2} \rangle_{t} - 2\langle y_{N} y_{P}^{c} \rangle_{t}}{\langle y_{N}^{2} \rangle_{t}}.$$
 (30)

Substituting for $\langle y_N^2 \rangle_t$, $\langle (y_P^c)^2 \rangle_t$ and $\langle y_N y_P^c \rangle_t$ from (A-13), (A-18) and (A-23) respectively and simplifying the result with (16), we obtain

$$\begin{bmatrix} {}_{B}R_{1}(y) \end{bmatrix}_{t} = \begin{bmatrix} {}_{B}R_{1}(y) + 2(\beta_{C} - 1) \\ + \sqrt{(2/\pi)} y_{t}(1 + \sigma_{A}^{2}) \exp(-v_{t}^{2}/2) \\ - \frac{4}{\pi} \left\{ \sigma_{B}^{3} [\exp(-y_{t}^{2}/2\sigma_{B}^{2}) - 1] \\ - \sigma_{A} \sqrt{\pi} \int_{0}^{y_{t}^{2}/2} \sqrt{u} \exp(-u) \\ \times \operatorname{erf} \left(\frac{\sigma_{A}}{\sigma_{B}} \sqrt{u} \right) du \end{bmatrix} \right] \\ \times [\beta_{C} + \sqrt{(2/\pi)} y_{t} \exp(-y_{t}^{2}/2)]^{-1}. \quad (31)$$

 $_{R}R_{1}(y)$ in (31) is given by (SP, 1976)

$${}_{B}R_{1}(y) = \langle (y_{N} - y_{P}^{c})^{2} \rangle / \langle y_{N}^{2} \rangle = \langle (y_{N} - y_{P}^{c})^{2} \rangle$$
$$= 2 - \frac{4}{\pi} [\sigma_{B} + \sigma_{A} \sin^{-1} (\sigma_{A})].$$
(32)

Index $[_{B}R_{1}(z)]_{t}$. From the definition of $[_{B}R_{1}(z)]_{t}$ given in Table 1 we can write

$$[_{B}R_{1}(z)]_{t} = \frac{\langle y_{N}^{4} \rangle_{t} + \langle (y_{P}^{c})^{4} \rangle_{t} - 2\langle y_{N}^{2} \langle y_{P}^{c} \rangle^{2} \rangle_{t}}{\langle y_{N}^{4} \rangle_{t}}.$$
 (33)

Substituting for $\langle y_N^4 \rangle_t$, $\langle (y_P^c)^4 \rangle_t$ and $\langle y_N^2 (y_P^c)^2 \rangle_t$ from (A-15), (A-22) and (A-24) respectively and simplifying, we obtain

$$\begin{bmatrix} {}_{B}R_{1}(z) \end{bmatrix}_{t} = \{ {}_{B}R_{1}(z) + \sqrt{(2/\pi)} (1 - \sigma_{A}^{2}) (y_{t}/3\beta_{C}) \\ \times \exp(-y_{t}^{2}/2) [(1 + y_{t}^{2}) \\ + \sigma_{A}^{2} (3 - y_{t}^{2})] \} [1 + \sqrt{(2/\pi)} (y_{t}/3\beta_{C}) \\ \times (3 + y_{t}^{2}) \exp(-y_{t}^{2}/2)]^{-1}.$$
(34)

In obtaining (34) we have used (16) as well as the result (SP, 1976)

$$_{B}R_{1}(z) = \frac{4}{3}\sigma_{B}^{2}.$$
 (35)

Index $[R_1^f(y)]_t$. From the definition of $[R_1^f(y)]_t$ given in Table 1, we can write

$$[R_1^f(y)]_t = 2 \int_{y_t}^{\infty} \int_{0}^{\infty} \left| \frac{y_N - y_P^c}{y_N + y_P^c} \right| P_t(y_N, y_P^c) \, \mathrm{d}y_N \, \mathrm{d}y_P^c.$$
(36)

With (13) we can rewrite (36) as

$$[R_{1}^{f}(y)]_{t} = \frac{1}{\beta_{c}} \left[2 \int_{0}^{\infty} \int_{0}^{\infty} \left| \frac{y_{N} - y_{P}^{c}}{y_{N} + y_{P}^{c}} \right| P(y_{N}, y_{P}^{c}) \, dy_{N} \, dy_{P}^{c} - 2 \int_{0}^{y_{I}} \int_{0}^{\infty} \left| \frac{y_{N} - y_{P}^{c}}{y_{N} + y_{P}^{c}} \right| \times P(y_{N}, y_{P}^{c}) \, dy_{N} \, dy_{P}^{c} \right].$$
(37)

The first term within the square brackets represents $R_1(y)$ (see PP, 1977). Making use of the transformation (24) in the integrals occurring as the second term on the right-hand side of (37), we obtain

$$[R_{1}^{f}(y)]_{l} = \frac{1}{\beta_{c}} \left[R_{1}^{f}(y) - 2 \int_{0}^{y_{l}/(1+y_{l})} \int_{0}^{1} \left| \left(\frac{u}{1-u} - \frac{v}{1-v} \right) \right| \right] \\ \times \left[\frac{v}{1-v} + \frac{v}{1-v} \right] \\ \times \left[\frac{u}{1-u}, \frac{v}{1-v} \right] \\ \times \frac{du}{(1-u)^{2}} \frac{dv}{(1-v)^{2}} \right].$$
(38)

 $R_1^f(y)$ has been shown to be (PP, 1977)

$$R_{1}^{f}(y) = \frac{2}{\pi} \left\{ [(1 + \sigma_{A})/(1 - \sigma_{A})]^{1/2} \ln [2/(1 + \sigma_{A})] \right\}$$
$$[(1 - \sigma_{A})/(1 + \sigma_{A})]^{1/2} \ln [2/(1 - \sigma_{A})] \left\{ (39) \right\}$$

Index $[R_1^f(z)]_t$. From the definition of $[R_1^f(z)]_t$ given in Table 1 we can write

$$[R_1^f(z)]_t = 2 \int_{y_t}^{\infty} \int_{0}^{\infty} \left| \frac{y_N^2 - (y_P^c)^2}{y_N^2 + (y_P^c)^2} \right| P_t(y_N, y_p^c) \, \mathrm{d}y_N \, \mathrm{d}y_P^c.$$
(40)

Following the same procedure as that used for $[R_1^f(y)]_t$ we can show that (40) becomes

$$[R_{1}^{f}(z)]_{t} = \frac{1}{\beta_{c}} \left[R_{1}^{f}(z) - 2 \int_{0}^{y_{t}/(1+y_{t})} \int_{0}^{1} \left| \left[\left(\frac{u}{1-u} \right)^{2} - \left(\frac{v}{1-v} \right)^{2} \right] \right| / \left[\left(\frac{u}{1-u} \right)^{2} + \left(\frac{v}{1-v} \right)^{2} \right] \left| P\left(\frac{u}{1-u}, \frac{v}{1-v} \right) + \left(\frac{du}{(1-u)^{2}} \frac{dv}{(1-v)^{2}} \right], \quad (41)$$

Table 2. Values of $[R_1(y)]_t$ and $[R_1(z)]_t$ as functions of σ_A and y_t for the centrosymmetric case

			$[R_1(y)]_t$			$[R_1(z)],$				
$y_t \longrightarrow$. 0.00	0.19	0.30	0.45	0.60	<i>y_t</i> — • 0 • 00	0.15	0.30	0.45	0.60
	360100800166697756645848816179881066999971188081775470076870087075471959777400788400 4784774140058001877777777777777777777777777777777	351113473700937356460399385776684189785318755544444444444449777777777777777777777	43179539977552708048943034916694185051555544549410988515814744444450	6034114561519135514576391178561989984733220395798795473568894472074767390 968729892559604339211674606403099888764145788887641477948887641476788887641457765380 968729892559604339211674606403099888764145788887641477913567768380148778470 96872989259776100305057763917850019899488403369145788887641477913567768380148778470 96872989257488925977715003099888976488403369145788887641477913567768380148778470 968741787878787878787878787878787878787878	9830874774788780747878787878787878787878787	426426413107766647620929993886754247777777777777559950079995044477551127724474575513329970140009542447755112777665959542425552799701400095531000998765424575515873777655956509542444775511275515555542457551555542457551555554245755155554245755155555424575515555542457551555554245755155555424575515555542457551555554245755155555424575515555554245755555555424575555555555		$\begin{array}{c} 824425741990977918169647557668612884128849909769585129999998699999998699999986999999869999999$		

where $R_1^f(z)$ is given by (PP, 1977)

$$R_1^f(z) = \frac{2\sigma_B}{\pi\sigma_A} \ln\left(\frac{1+\sigma_A}{1-\sigma_A}\right).$$
(42)

3. Discussion of the theoretical results

The theoretical expressions for the six normalized R indices valid for truncated data have been derived in (25), (29), (31), (34), (38) and (41). A study of these equations shows that we can, in general, write the R indices applicable to the truncated data in the general form as

$$[R]_{t} = A(y_{t}) [R + B(\sigma_{A}, y_{t})], \qquad (43)$$

where R stands for any one of the normalized R indices, $A(y_t)$ is a function of y_t and $B(\sigma_A, y_t)$ is a function of σ_A and y_t . If $y_t \to 0$, $A(y_t) \to 1$ and $B(\sigma_A, y_t) \to 0$ so that $[R]_t \to R$ as required.

A study of (25), (29), (31), (34), (38) and (41) shows that these R indices depend on the parameters y_i (which is a characteristic of the data) and σ_A . σ_A is in turn a function of σ_1^2 (*i.e.* the fractional contribution to the local mean intensity from the known atoms), $\langle |\Delta \mathbf{r}| \rangle$ (*i.e.* the mean positional error in the atoms of the model) and sin θ/λ . Putting $\sigma_A = \sigma_1$ (*i.e.* $\langle |\Delta \mathbf{r}| \rangle = 0$) in these equations, we can obtain the results for the related case. Similarly, putting $\sigma_A = 0$ (*i.e.* $\langle |\Delta \mathbf{r}| \rangle$ large), we can obtain the results for the unrelated case. The local values of these R indices (in percent) are given in Tables 2–4 as functions of σ_A for different fixed values of y_i ,

Table 3. Values of $[{}_{B}R_{1}(y)]_{t}$ and $[{}_{B}R_{1}(z)]_{t}$ as functions of σ_{A} and y_{t} for the centrosymmetric case

	_g R ₁ (v) _r					$ _{B}R_{1}(z) _{t}$				
σ, ↓	<i>y_t</i> -> 0 • 00	0.15	0.30	0.45	0.60	<i>y_t</i> → 0.00	0.15	0.30	0.45	0.60
00000000000000000000000000000000000000	64883112037101518628140152363248319900122182437696584235940741835509070 6527542950347455086281401523639999999987664157663798642172603455317267899 2422120876424553219740615913456789999999999876641576637986411726034553172678990 24221208764245533170288765434444444433333333333333333372222222222	39654166033854567749045131424240030926319987402165620037319875279670150 45089398038845128955110849244306023194805537996133085160478898627134270 108877097455321098765321109876532492443060231948097379961330864715825814703681470 22211009745532109876532110988765433445306023194824209865433085160478894814703684471580 222110097455321098765321109887654333333333333333333333333333333333333	77763779114060193362058748857609326337322356640288164358272714538833700 330726898765439000987159149265994431837011062689851577515774800368999751714665399370 44433210987654332198776554332119846936924791357901234444433246048816435814702570 55555554444433210987654332198776554332110988765433210987654321098776515770	55428075359298801182022069960079696721251739476226137422460494940769390 688088010812549969945142950356952714594799011211605044797110988677653809646947703550360 9888888766542210998555594937115937145956327139579135578901121160504649471109886776554380 988888876654221099875559437371109988776554774111654543211100988776554380004699390	7 395.0098 6928006682690849343933030761039803849478711534856078202809505100 944700879140481468558833321844804542887897997191071141841507416160099887689537155 5555543470087914448146855883332189480454288799719971910711411001001001140150749888758917155 55555448876555438111005988876655448121005988766544382100107114101998876655448805895371150 544444444444444444444444887888588766554488287665544882887665544888588588588588585876655448885885858766554488858 444444444444444444448885888858885	300300300030003000300300300300300300300	9477320505023976641559756064572753243345665416133208643305887433583976792629766480 42788601710677553942405018825875824845865741680488486133208645887537886837679262975648 110298741067755394405019825814680432086433005887487537888839767926299588 111111111100999998888877777777664319986433454665341613320886419753188637888997653289588 1122211111111009999988888877777777664319986433454665318444433338202086418753788883976792629956480 11211111111009999988888877777777664319986433455687344443333820208641877331863788839976533210	$\begin{array}{c} 8775612287716600654275347185321974924281933870666940877776666544310857828010\\ 217566782567842667812877777666664275320068727850036877875532106658431077420748092610\\ 21009876078456782966781287777776666431087553108647875532106857774776676892610\\ 21009876078777777666664310875531086478408277553210686777477566665431008755210687777556666543100777420748092610\\ 210098760787556782864208657777777666666666555555447108755288493108575766768243209875552108675532106875777776676431085549310857575521086643209875553210665543109765321066675555554474787776676532106667555555643100875575566432008987555282000098755520000000000000000000000000000000000$	5473832465639173655485458261602317982152360875393593577639478862576380 2171180455676699772140540331575132109382157242674650170860221 10613206556764208655320975531987465963009755321993597553210986554318520 0009998754208655320975531987455409853210955224267445789988866554318520 00099987542086553209755319874554755221985445789988866554318520 000999887542086553209755319874553219875522198644578975532109867553210986318520	9999998888533777777766666666666666666666666666

since these are needed for evaluating the overall values of the R indices for a given situation (see later).

The variations of the R indices as a function of y_t for different fixed values of σ_1^2 have been obtained with the results in Tables 2-4 and the results obtained are shown in Figs. 1(a)-1(f). These figures have been obtained for the typical case where $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å and $\sin \theta/\lambda =$ 0.4 Å⁻¹. From a study of these figures, we obtain the following results. (i) As y_t increases the value of R decreases. However, for $y_t > 0.3$ this decrease is less marked. (ii) The decrease in R with y_t is more marked when σ_1^2 is small than when it is close to unity. Since for the data of actual crystals y_t is expected to be in the neighbourhood of 0.2 (Ponnuswamy & Parthasarathy, 1977), it would be useful to take care of data truncation for the calculation of the theoretical overall values of R indices. In view of (ii) this is particularly true for incomplete models.

We shall summarize here the general procedure that may be followed for computing the theoretical overall values of R for a given model. During the structure completion stage, since the atoms added to the model are subject to positional errors of the order of 0.2 Å on average, one may set $\langle |\Delta \mathbf{r}| \rangle \simeq 0.2$ Å. The evaluation of $[\bar{R}]_t$ involves the following steps. (i) From an analysis of the F_o data, determine the value of y_t appropriate to the data. (ii) Determine σ_1^2 for the given model. For a structure with similar atoms this may be taken to be

Table 4. Values of $[R_1^{\ell}(y)]_t$ and $[R_1^{\ell}(z)]_t$ as functions of σ_A and y_t for the centrosymmetric case

	$\left[R\left(y\right) \right] _{t}$					[<i>R</i> ⁴ ₁ (<i>z</i>)],				
σ _∧ 	y _t → 0•00	0.15	0.30	0.45	0.60	y _t → 0.00	0.15	0•30	0•45	0 •6 0
	4 301877 2922197 45506119735763507 42973779777776666666666666666666667757507745767777777777	53633443573535812913400711771877873622193945753486589365247-069428893620 633744729878684243819336787405787494948877147035789998630679011108639857444444443889369597044780 00099998877665554438193367874057877999988776544210998765434109099876442074040 00099998877777777777777777777777777777	4241108881065664753885894509036908063030848984112150963170944221110 9986417371405027126021686981221847020849026302621234443206718014138850939755611120 898641737140502126021085005112218470208490201231234432067180141388509397575611100 66666666554433714005888776666556417205850271243443320671801413885093975756778017395780 6666665554433221100988877666617208439020123123443320671801413885093975757777777777777777777777777777777	5198610798604773194310447434564004069775945736877744108989451436188996100 3309864036274874943899574871199615777777757687689246897536874744108989451433820926780 3309746035574871995748711996157771777157626892468900986403878333310144338209268780 666655554432211009987666665554433662666592468900986437734474420887878787777777777777777777777777	7953288783315443224614824324694485432495494862434090944747898644169009471942498649469409496964047892094498009497492989494749809894469809496940949749989446498649498949498949498949498949498949498949498949498949498949498949498949498949498949498949498949498949494989494949894949498949494989494949894949498949494989494949894949498949494989494949894949498949494989494949498949494989494949894949498949494989494949498949494989494949894949498949494989494949894949498949494989494949498949494989494949894949498949494989494949894949498949494989494949894949498949494989494949894949498949494949894	2408861336971438647238867725978887203122262677258745872388433966914666552884310 2775-76-765688999982209986677238667036759788872094790312226226726788433996914666552687238849339669141111122222222222222222222222222222	$\begin{array}{c} 8 \\ 3 \\ 0 \\ 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 3552\\ 3552\\ 4119\\ 1202\\ 55442\\ 8002\\ 7719\\ 1202\\ 8022\\ 777\\ 777\\ 62422\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 742\\ 8002\\ 802\\ 802\\ 802\\ 802\\ 802\\ 802\\ 8$	1448709766779936764970139983100773255232474936619354201710007551000775255232470017000000000000000000000000000000000	1777594780487898789265529018733856736607788799375568899737692092745755844821010330 32149210085095593704554967366052999997375108549970376920920927455785848821007555544443374109998875595412475558488210975548287455791224332100098887555844457762455785287412000000000000000000000000000000000000

Fig. 1. Variation of the local values of normalized R indices as a function of y_t for different fixed values of σ_1^2 . For the definition of $R_1(y)$, $R_1(z)$, etc., see column 6 of Table 1.

P/N. (iii) Divide the range $0 \le s \le S_{\max}$ into a number of narrow subintervals. Determine from the data the number (n_s) of observed reflections in each of these sub-intervals. (iv) From the mean value of $\sin \theta/\lambda$ corresponding to each sub-interval determine the values of f. (v) Calculate σ_A (by taking $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å) corresponding to each of these sub-intervals. (vi) Make use of the results in Tables 2–4 and determine the values of $[R]_t$ for these sub-intervals by bilinear interpolation. (vii) Make use of the results thus obtained in the appropriate expressions for $[\bar{R}]_t$ and compute the overall values $[\bar{R}]_t$. The values thus obtained represent the theoretical overall values of the normalized R indices corresponding to a model for which $\langle |\Delta \mathbf{r}| \rangle = 0.2$ Å and for data in which $y_N \ge y_t$ and $0 \le s \le S_{\max}$.

References

- PARTHASARATHI, V. & PARTHASARATHY, S. (1977). Pramana, 9, 61–69.
- PARTHASARATHY, S. (1975). J. Indian Inst. Sci. 57, 127–159.
- PARTHASARATHY, S. & PARTHASARATHI, V. (1975). Acta Cryst. A31, 178–185.
- PONNUSWAMY, M. N. & PARTHASARATHY, S. (1977). Acta Cryst. A33, 838–844.

SRINIVASAN, R. & PARTHASARATHY, S. (1976). Some Statistical Applications in X-ray Crystallography. Oxford: Pergamon Press.

STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 182. New York: Macmillan.

WILSON, A. J. C. (1949). Acta Cryst. 2, 318–320.

Acta Cryst. (1981). A37, 480-485

Theoretical Evaluation of the Overall Values of Discrepancy Indices for Truncated Data. II. Normalized R indices for a Non-centrosymmetric Crystal with Similar Atoms

By D. Velmurugan and S. Parthasarathy

Department of Physics (Crystallography and Biophysics),* University of Madras, Guindy Campus, Madras-600025, India

(Received 2 June 1980; accepted 13 January 1981)

Abstract

Theoretical expressions and numerical tables for the local values of six types of normalized R indices are obtained for an imperfectly related incomplete model of

* Contribution No. 546.

0567-7394/81/040480-06\$01.00

a non-centrosymmetric crystal with truncated data. Under similar conditions, the curve of the local value of an R index versus the truncation limit y_t is relatively more flat for the non-centrosymmetric case than for the centrosymmetric case particularly in the region where y_t is small.

.00 © 1981 International Union of Crystallography